The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
Large language models (LLMs) increasingly support reasoning over biomolecular structures, but most existing approaches remain modality-specific and rely on either sequence-style encodings or fixed-length connector tokens for structural inputs. These designs can under-expose explicit geometric cues and impose rigid fusion bottlenecks, leading to over-compression and poor token allocation as structural complexity grows. We present a unified all-atom framework that grounds language reasoning in geometric information while adaptively scaling structural tokens. The method first constructs variable-size structural patches on molecular graphs using an instruction-conditioned gating policy, enabling complexity-aware allocation of query tokens. It then refines the resulting patch tokens via cross-attention with modality embeddings and injects geometry-informed tokens into the language model to improve structure grounding and reduce structural hallucinations. Across diverse all-atom benchmarks, the proposed approach yields consistent gains in heterogeneous structure-grounded reasoning. An anonymized implementation is provided in the supplementary material.
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
Retrieval-augmented generation (RAG) promises grounded question answering, yet domain settings with multiple heterogeneous knowledge bases (KBs) remain challenging. In Chinese Tibetan medicine, encyclopedia entries are often dense and easy to match, which can dominate retrieval even when classics or clinical papers provide more authoritative evidence. We study a practical setting with three KBs (encyclopedia, classics, and clinical papers) and a 500-query benchmark (cutoff $K{=}5$) covering both single-KB and cross-KB questions. We propose two complementary methods to improve traceability, reduce hallucinations, and enable cross-KB verification. First, DAKS performs KB routing and budgeted retrieval to mitigate density-driven bias and to prioritize authoritative sources when appropriate. Second, we use an alignment graph to guide evidence fusion and coverage-aware packing, improving cross-KB evidence coverage without relying on naive concatenation. All answers are generated by a lightweight generator, \textsc{openPangu-Embedded-7B}. Experiments show consistent gains in routing quality and cross-KB evidence coverage, with the full system achieving the best CrossEv@5 while maintaining strong faithfulness and citation correctness.
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
MOOC recommendation systems have received increasing attention to help learners navigate and select preferred learning content. Traditional methods such as collaborative filtering and content-based filtering suffer from data sparsity and over-specialization. To alleviate these limitations, graph-based approaches have been proposed; however, they still rely heavily on manually predefined metapaths, which often capture only superficial structural relationships and impose substantial burdens on domain experts as well as significant engineering costs. To overcome these limitations, we propose AMR (Aspect-aware MOOC Recommendation), a novel framework that models path-specific multiple aspects by embedding the semantic content of nodes within each metapath. AMR automatically discovers metapaths through bi-directional walks, derives aspect-aware path representations using a bi-LSTM-based encoder, and incorporates these representations as edge features in the learner-learner and KC-KC subgraphs to achieve fine-grained semantically informed KC recommendations. Extensive experiments on the large-scale MOOCCube and PEEK datasets show that AMR consistently outperforms state-of-the-art graph neural network baselines across key metrics such as HR@K and nDCG@K. Further analysis confirms that AMR effectively captures rich path-specific aspect information, allowing more accurate recommendations than those methods that rely solely on predefined metapaths. The code will be available upon accepted.
Knowledge graphs (KGs) have become a key ingredient supporting a variety of applications. Beyond the traditional triplet representation of facts where a relation connects two entities, modern KGs observe an increasing number of hyper-relational facts, where an arbitrary number of qualifiers associated with a triplet provide auxiliary information to further describe the rich semantics of the triplet, which can effectively boost the reasoning performance in link prediction tasks. However, existing link prediction techniques over such hyper-relational KGs (HKGs) mostly focus on a transductive setting, where KG embedding models are learned from the specific vocabulary of a given KG and subsequently can only make predictions within the same vocabulary, limiting their generalizability to previously unseen vocabularies. Against this background, we propose THOR, an inducTive link prediction technique for Hyper-relational knOwledge gRaphs. Specifically, we first introduce both relation and entity foundation graphs, modeling their fundamental inter- and intra-fact interactions in HKGs, which are agnostic to any specific relations and entities. Afterward, THOR is designed to learn from the two foundation graphs with two parallel graph encoders followed by a transformer decoder, which supports efficient masked training and fully-inductive inference. We conduct a thorough evaluation of THOR in hyper-relational link prediction tasks on 12 datasets with different settings. Results show that THOR outperforms a sizable collection of baselines, yielding 66.1%, 55.9%, and 20.4% improvement over the best-performing rule-based, semi-inductive, and fully-inductive techniques, respectively. A series of ablation studies also reveals our key design factors capturing the structural invariance transferable across HKGs for inductive tasks.
Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure and can be handled by a range of established algorithms for classification and prediction, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing ~56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts.
This paper aims to train a graph foundation model that is able to represent any graph as a vector preserving structural and semantic information useful for downstream graph-level tasks such as graph classification and graph clustering. To learn the features of graphs from diverse domains while maintaining strong generalization ability to new domains, we propose a multi-graph-based feature alignment method, which constructs weighted graphs using the attributes of all nodes in each dataset and then generates consistent node embeddings. To enhance the consistency of the features from different datasets, we propose a density maximization mean alignment algorithm with guaranteed convergence. The original graphs and generated node embeddings are fed into a graph neural network to achieve discriminative graph representations in contrastive learning. More importantly, to enhance the information preservation from node-level representations to the graph-level representation, we construct a multi-layer reference distribution module without using any pooling operation. We also provide a theoretical generalization bound to support the effectiveness of the proposed model. The experimental results of few-shot graph classification and graph clustering show that our model outperforms strong baselines.